Optical Recording from Individual Neurons in Culture
نویسندگان
چکیده
Methods for optically recording dynamic processes in single living neurons must be considered in light of two fundamental questions: what to record and how to record it. Specifically, deciding what to record involves determining a parameter of interest (e.g., membrane potential or ion concentration), the nature of the information required (e.g., qualitative or quantitative) and the optical indicator best suited to making these measurements. Likewise, deciding how to record these signals involves consideration of recording methodologies (i.e., photometry or imaging), experimental procedures (e.g., loading and staining protocols) and data processing techniques (i.e., signal processing and analysis). Irrespective of which combination of methods are chosen it is important to understand the essential factors that contribute to obtaining high quality optical signals. By fully understanding the fundamental limits of this recording methodology, the novice investigator should be able to maximize signal quality and effectively solve any technical problems that might arise. This chapter considers both instrumentation and experimental factors and their implications for making both qualitative and quantitative optical recordings from individual neurons in culture. In particular, appropriate methods for making fast recordings of various physiological parameters, with subcellular resolution, are documented. Two classes of indicators, voltage-sensitive dyes and calcium indicators, are used to illustrate the principles underlying successful optical recording. These principles can easily be extrapolated to other indicator types. The scope of this chapter is limited to the consideration of methods for making physiological recordings from individual neurons or small group of cells in culture. Therefore, we do not consider methods used to examine fine structural details or localize cellular markers. Nor do we consider the cell culture methods necessary to produce neurons suitable for optical recording (instead, see Chapter 10). However, several cell culture properties that should be optimized to facilitate this kind of recording are documented. Optical recording methods for use in more complex tissues such as brain slices or in vivo preparations are considered in other chapters in this volume. In particular, the reader is referred to Sinha and Saggau (Chapter 16) and Grinvald et al. (Chapter 34). There are a number of preliminary steps that must be undertaken prior to conducting an experiment employing optical recording methods. The remainder of this section examines several such issues. These include: – Desirable properties of cell cultures for optical recording – Methods for visualizing single neurons
منابع مشابه
Long-term optical recording of patterns of electrical activity in ensembles of cultured Aplysia neurons.
1. Left upper quadrant (LUQ) cells isolated from the abdominal ganglion of Aplysia were maintained in culture to study how the cellular and synaptic properties of individual neurons contribute to the generation of patterns of electrical activity by neuronal ensembles. 2. Conventional microelectrodes were used to examine the spiking characteristics of individually cultured LUQ cells in vitro and...
متن کاملThe effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions
Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...
متن کاملComparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures
Primary neuronal cultures share many typical features with the in vivo situation, including similarities in distinct electrical activity patterns and synaptic network interactions. Here, we use multi-electrode array (MEA) recordings from spontaneously active cultures of wildtype and glutamic acid decarboxylase 67 (GAD67)-green fluorescent protein (GFP) transgenic mice to evaluate which spike pa...
متن کاملThe effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions
Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...
متن کاملValidation of independent component analysis for rapid spike sorting of optical recording data.
Independent component analysis (ICA) is a technique that can be used to extract the source signals from sets of signal mixtures where the sources themselves are unknown. The analysis of optical recordings of invertebrate neuronal networks with fast voltage-sensitive dyes could benefit greatly from ICA. These experiments can generate hundreds of voltage traces containing both redundant and mixed...
متن کامل